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CHANGE POINT ESTIMATION USING 

NONPARAMETRIC REGRESSION 


Bell Laboratories 

We consider a regression model in which the mean function may have 
a discontinuity at  an unknown point. We propose an estimate of the 
location of the discontinuity based on one-side nonparametric regression 
estimates of the mean function. The change point estimate is shown to 
converge in probability at  rate O ( n - ' )  and to have the same asymptotic 
distribution as maximum likelihood estimates considered by other authors 
under parametric regression models. Confidence regions for the location 
and size of the change are also discussed. 

1. Introduction. Let xi = i /n,  1 , .  . . , n,  and Y, = f(xi)  + F,, where the 
residuals are independent N(0, l )  and f is right continuous and left continu- 
ous except at  an unknown change point T E (0,l) .  A second quantity of 
interest is the size of the change, which we measure by A = f(.r+)- f(r-1. 

If f is assumed to be constant except a t  the change point, this model 
reduces to the mean shift model for a sequence of independent normal 
random variables. The maximum likelihood estimate .i of r was shown by 
Hinkley (1970) to converge in probability at  rate O(n-l). Hinkley also 
showed the limit distribution of n(+- T)  related to the location of the 
maximum of a two-sided random walk. These results are extended to para- 
metric regression models by Kim and Siegmund (1989). 

We make the weaker assumption that f varies smoothly away from the 
change point. Specifically, we suppose there exists a constant P such that 

( I )  f ( x )  - f ( y )  Ip x  - y whenever ( x  - r ) ( y  - T )  > 0. 

Let K(u) be a weight function defined on [O,x) satisfying the following 
conditions: 

1. K(0) > 0, K(u) 2 0 for 0 < u < 1and K(u) = 0 for u 2 1. 
2. The exists z such that IK(u) - K ( v )  < zlu - v 1 for all u, v 2 0. 
3. j;K(u) du = 1. 

We choose a bandwidth h ,  with the requirements h -t 0 as n -t x, but 
nh/log n -t =. 

For some i ,  15 i In,  we have x,-, < T Ix,. However, the data cannot be 
used to distinguish possible changes in this interval. For definiteness, we 
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suppose that T is an event time; r = x i .  Of course, this requires r to depend 
on n although we suppress this dependence. 

Left and right local regressions are used to estimate the left and right 
limits of f at  event times. For t such that m = nt  is an integer, assign 
weights K (  j / ( n h ) )  to observations Ym+j,j = 0 , . . . , nh.  Then, fit a local 
polynomial model of degree p by weighted least squares: 

E ( Y m + j ) = a o + a l j + ~ ~ + + a p j P ' ,j = O  , . . . ,n h .  

Define f",(t) = 6,. An estimate f - ( t )  is defined similarly, using Y,-,- ,, 
j = 0 , . . . , nh.  For local constant fitting ( p  = 0 ) we have explicitly 

Define A,=*f+( t )- f*_(t) .The estimate S of T is that value of t which 
maximizes A: over the range h I t I 1 - h .  One could also consider the 
maximizer of A, if it is known A > 0. 

The choice of order of local polynomial turns out to have little impact on 
the asymptotic results for S derived below. In praqtice, for local constant 
fitting A, may be quite biased, and local linear fitting, although more 
variable, is usually preferable. This is related to the "boundary problem" in 
nonparametric regression, discussed, for example, in Fan and Gijbels (1992). 

The estimate here is similar in principle to that studied by Muller (1992); 
however, by imposing different conditions on K our estimate has dramati- 
cally different properties. These differences and comparisons with other 
estimates are explored further in Section 2. 

THEOREM1. Let . . ., E-,, E,, E,, . . . be independent N ( 0 , l )  random vari- 
ables. Then 

lim P ( n ( ?- r )  = I )  = P ( L ,  = I ) ,  
n + x  

where L ,  is the location of the maximum of the process 

In the simplest parametric change point model, one assumes f ( t )  = ,u + 
AI ( t  2 T ) .  The maximum likelihood estimate of T is then 

T~~~ = arg max 
m ( n  - m )  S, - S, 

- 5) 
2 

, 
o < t < l  m ( n - m  m 
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where m = nt  and S ,  = CI",lYi. Hinkley (1970) derived exactly the limit 
distribution in Theorem 1 for n(?,,, - 7). The local regression estimates will 
require a larger n for the asymptotics to be applicable. 

Confidence sets for parametric change point problems have been discussed 
by several authors. Siegmund (1988) reviewed several methods. Kim and 
Siegmund (1989) discussed confidence sets for change points in parametric 
regression models. The following theorems adapt the likelihood ratio method 
of Siegmund (1988) to find asymptotic confidence regions for r and ( 7 , A). TO 
state the results we need some notation. Let A ( u )  = ( 1  u ... u p l T ,Aj = 

/ i ~ ( u ) J A ( u ) A ( u ) ~d u  and 

The notation [ . I l , ,denotes matrix subscripting. 

THEOREM Under the assumptions of Theorem 1, 2. 

n h  
--sup j A: - A: 1 -+9zLA. 
2 M l  t 

Let A)  denote the 1 - y quantize of ZLAand 

Then 

(4) l i r n P ( r €  11)= 1 - y .  
n-= 

For I ,  to be an asymptotic 1 - y confidence set would require the conver- 
gence in (4) to be uniform in r ,  A and f .  Clearly this cannot hold; however, 
uniformity can easily be obtained by assuming these parameters lie in 
suitable compact spaces. 

THEOREM3. Suppose the bandwidth satisfies nh3  -+ 0 i n  addition to the 
existing conditions. Let U be a X,2 random variable, independent of ZLA. 
Define 

n h  2 n h  A 

( A )  = ( A - A )  + --(A; - A:).
2M2 2 M l  

Then 

l ( 7 ,  A )  -+9iU + ZLA. 

Let c 2 ( y ,  A )  be the ( 1  - y )  quantize of i U  + ZLAand define 
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Then 

lim P ( ( r ,  A) E 12)= 1- y 
n-= 

We remark that the condition nh3 - 0 ensures the bias of A, is small 
relative to its variance. With p 2 1 and under appropriate smoothness 
conditions on f(t), t # T, this condition can be weakened. 

Approximations to c,(y, A) and c2(y, A) were given by Siegmund [(1988), 
equations 7 and 251. In our notation, these are 

P(ZLA> c,) = 1- (1- v(A)e-'I) 2 , 

These are asymptotic as c, and c2 - x .  The quantity v(A) is defined by 
Siegmund [(1988), equation 41; the approximation v(A) = fore-0.583%uffi~e~ 
most purposes. 

Asymptotics for change point estimates based on two-sided random walks 
have been derived for a number of models; Dumbgen (1991) is a recent 
reference. An important question studied by Ritov (1990) is efficiency: Can 
one do better by aiming for functionals of the random walk other than the 
maximizer? The answer depends on the loss function; a maximum likelihood 
type estimate is appropriate for 0-1 loss. For a quadratic loss, Ritov's results 
suggest considering estimates of the form 

where ,u, denote counting measure on {j/n:  Ij - n?l < i,} and i, - = at a 
suitably slow rate; see (5) below. For detecting a change in the drift of 
Brownian motion, the asymptotic efficiency of the maximum likelihood esti- 
mate is about 73% under quadratic loss; see Ibragimov and Has'minskii 
(1981). 

2. Comparisons. Our change point estimate is illustrated in Figure 1. 
The data in the top panel are convoluted with the split kernel (middle panel) 
to obtain At in the bottom panel. The crucial condition leading to the O,(n-') 
convergence in Theorem 1 is K(0) >'o. If t is increased from T (i.e., the 
kernel in FigureA 1 movedAto the righi) postchange observations will switch 
abruptly from f+( t )  to f-(t), and f-(;) responds rapidly to the change. 
Likewise, when t is decreased from T ,  f+( t )  responds rapidly to the change. 
This results in the sharp peak in A, a t  t = 7 . Smoothness of the kernel a t  
points other than 0 is required to minimize spurious noise in the process. 

An early related paper is McDonald and Owen 41986), who estimated a 
regression curve with possible discontinuities using weighted combinations of 
left, right and central smooths a t  various bandwidths combined using a mean 
squared error criterion. Change point estimates based on the difference of left 
and right smooths were introduced by Muller (1992) and Hall and Tittering- 
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FIG.1. How the change point e s t i ~ a t e  works. A data set ( top)  is convoluted with a split kernel 
(m idd l e )  to produce A, = f + ( t )  - f - ( t )  (bottom). The estimate is that value of t which maxi- 
mizes A,. 

ton (1992) as part of a more complicaked smoothing procedure. However, in 
both these papers the weights used do not satisfy our conditions and the 
resulting estimates have different asymptotic performance. The conditions 
(K4) and (K2) in Miiller (1992)jointly imply K ( 0 )  = 0 ; this leads to estimates 
with an inferior rate of convergence. 

Hall and Titterington (1992)der i~edtheir estimates from different princi- 
ples, but in their examples 8 and f, are our one-sided local linear estimates 
with the uniform weight function K ( u )  = I[,,l l (u) .A result similar to Theo- 
rem 1 still holds in this case, but observations around the discontinuit<es a t  
u = 5 1 contribute to the limit distribution with a fraction of 1/4. The ei in 
(3) now have variance 1 + 2(0 .25)~= 1.125. This slightly reduces the effi- 
ciency of the estimate. 
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FIG.2. Comparison of our estimate ( le f t )  zczth that of il/luller (1992) (r ight )  for a change of size 
A = 1. Plotted are the 50th percentile ( 0 )  and 90th percentile (+) of the absolute deviation 
nl? - 71, estimated by Monte Carlo simulation. Dashed lines are the asymptotic approxzmations to 
the quantiles. 

We give a simulated example to more fully appreciate the difference 
between our estimate and Muller's. Consider the model f(x) = 4 sin(5x) + 
3x + I ( x  2 0.7) and n = 1000. This represents a challenging problem; the 
change is nearly impossible to detect by eye and a long sequence is required 
for any estimator to have much chance of detection with N(0, l )  residuals. 

The left panel of Figure 2 displays results based on 10,001 simulations, 
showing the median and 90th percentile of the distribution of nl? - TI. Local 
linear regression with K(u) = $(I - u2)I(0 Iu I1)was used to construct 
f - ( t )  and f+(t) . The estimate requires quite large bandwidths: nh 2 60 to 
reliably detect the change with probability 0.5 and nh 2 130 to detect with 
probability 0.9. The asymptotic MAD of 2 is achieved for nlz 2 100, while the 
asymptotic 90th percentile is never quite achieved. Confidence sets for T were 
computed using Theorem 2 with nh = 150 and 1- y = 0.9; the actual cover- 
age obtained was 91.1% with a median size of 11 observations. The joint 
confidence regon of Theorem 3 achieved an actual coverage of 92.0%, again 
with a nominal 90% coverage. 

The estimate of Miiller (1992) is considered in the right panel of Figure 2, 
using the boundary kernel K(u) = 12u(l  - u)(3 - 5u)I(O 5 u 5 1). Simi-
larly large bandwidths are required to detect the change; however, the 
minimum MAD achieved is 5. The estimate is more sensitive to the band- 
width, with bias sometimes dominating A, for nh 2 220. The asymptotic 
distribution in this case is n(? - T )  - N(O,0.296nh) given by Miiller [(1992), 
Corollary 3.11. 
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3. Proofs. To prove Theorem 1, we consider the behavior of At in two 
parts. Lemma 1 considers the case It - 7 2 i , /n ,  where i ,  -+ = as n -+ x ,  

with 

( 5 )  i ,  = o (min ( \ l nh / l og ,  h h l ) ) .  

Lemma 2 considers It - 71 < i , /n.  

LEMMA1. .j is a  consistent estimate of 7 :  

P(I? - 71 > i , / n )  -t 0 .  

LEMMA2. Let m = n7. As n  -+ x ,  

The o(1) term holds uniformly for 1  I i I i,. 

For simplicity, proofs will be for local constant fitting ( p  = 0 )  only; for 
general p the results follow by considering the asymptotically equivalent 
kernels K " ( u ) = K(u)[h; lA(u)] , .We first apply the results to prove Theo- 
rems 1, 2 and 3. Let ?' be the value of t that maximizes A; over [ r- i o / n ,  
7 + i , /n] .  Then by Lemma 2, 

P ( n ( ? '  - T )  = I )  -+ P ( L ,  = I ) .  

Since ? = ?' whenever nl? - T I < i O ,  

P ( n ( . j l- r )  = I )  - P(n1.i - 7 > i , )  I P ( n ( ?- 7 )  = I )  I P ( n ( ? '  - r )  = I )  

and an application of Lemma 1 completes the proof of Theorem 1.The proof of 
Theorem 2 is similar. 

To prove Theorem 3 we need to show 

( 8 )  ( A - A )  jrN ( 0 7  M 2 )  

and is asymptotically independent bf nh(A; - A:). Since At is normally 
distributed, to establish (8)it suffices to show convergence of moments. Using 
the continuity of K and f ,  
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where S(nh) = C,",hoK( j/nh). Note (nh)-lS(nh) - l iK(u)du = 1.Treating 
{(T-) similarly and using the assumption nh3 - 0, 

Evaluating the variance of A, from (2) is straightforward. 
The asymptotic independence follows because AT depends on q,n r  -jl < 

nh, while A$ - A: depends only on in the negligible subinterval 1n.r -jl < 
i,. 

It remains to prove Lemmas 1 and 2. The following lemma is used 
repeatedly. 

LEMMA3. Let rln,j, j = 1,.. . , n, n 2 1, be a triangular array of N(0, a: j) 
random variables, not necessarily independent. Let Mn = sup,, j,n I%,j /  If 
supl j, ,a: log n -+ 0 as n -+ x, then Mn -+ 0 with probability 1. 

PROOF.Fix 6 > 0. If n is sufficiently large, then a:j log n a S2/5 for all 
j. Using Bonferroni's inequality and the bound 1- @(c)I +(c)/c, 

Hence, C", P( Mn > 6) < x and by the Borel-Cantelli lemma, M, > 6 only 
finitely often. Since 6 is arbitrary, this implies M, - 0. 

PROOFOF LEMMA1. We assume A > 0; the case A < 0 is similar. Essen-
tially following (9) and a similar bound for E({-( t ) ) ,  

Applying Lemma 3 gives suptlAt - Ehtl - 0 with probability 1. Hence, 
supt, ,+ A t  - 0 and A, - A. Therefore, 
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Now, 

P ( r  + i,/n I.i I.r + h)  

We show the first sum converges to 0; the second is easier. Since the terms 
are normal t ~ i l  probabilities, we need t! approximate the mean and variance 
of A,+,/,,- A,. From the definition of A, ,  

By (I), the difference of the f's can be bounded by kP i / n  in the first and 
third sums, and by A + Pi/n in the second sum. Also, K(u)l I z for all u. 
Hence, 

Since K(0) > 0, there exists c > 0 such that for n sufficiently large and all 
i 5 nh, 

( 11) S ( n h ) ~ +- h 5 c i .  

Similarly, 

Combining (11) and (121, 
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where C and h are positive constants, using the bound 1 - @(x) 5 4 ( x ) / x .  
The sum is asymptotic to 

ce- A ~ o  

since i ,  + .-c. Hence, P(.r + i , /n  < .i< r + h )  + 0. Combining with (10)gives 
P(.i > r + i , /n )  + 0. Treating the left tail similarly completes the proof of 
Lemma 1. 

PROOFOF LEMMA2. We prove onlx (6); a proof of (7) is similar. Along the 
lines of the proof of Lemma 1, ( A ,  + A,)/2 + A uniformly for It - 71 5 i o / n  
and it therefore suffices to show 

where m = nr. We achieve this by showing 

S ( n h ) ( f -( r  + i / n )  - f- ( 7 ) )  

(13)  
= i K ( 0 ) A  + K ( O ) ( E ,  + ... + e m + , - l )+ o ( l ) ,  

(14)  s ( n h ) ( f + ( r+ i / n )  - f + ( r ) )= -K(O)(s,,  + ... + ~ ( l ) ,  

where o(1) holds uniformly in i < i,. Note Ml = 2K(O) for local constant 
fitting. 

Using the definition of f- ( t ) ,  

We treat this in four parts. Using the ~ i ~ s c h i t zcontinuity of f and K ,  
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Applying (5) and a similar lower bound shows 

where o(1) holds uniformly in i, 1I i r i,. Similarly, 

= -iK(O) f ( r - )  + o(1) 

using i, = o(h-I). 
Turning to the random components of (151, 

and applying Lemma 3, 

uniformly in i < i,. Similarly, 

and another application of Lemma 3 gives 

Substituting (16), (17), (18) and (19) into (15) establishes (13). A similar 
derivation of (14) completes the proof. 
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